100=-16t^2+160

Simple and best practice solution for 100=-16t^2+160 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 100=-16t^2+160 equation:



100=-16t^2+160
We move all terms to the left:
100-(-16t^2+160)=0
We get rid of parentheses
16t^2-160+100=0
We add all the numbers together, and all the variables
16t^2-60=0
a = 16; b = 0; c = -60;
Δ = b2-4ac
Δ = 02-4·16·(-60)
Δ = 3840
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{3840}=\sqrt{256*15}=\sqrt{256}*\sqrt{15}=16\sqrt{15}$
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-16\sqrt{15}}{2*16}=\frac{0-16\sqrt{15}}{32} =-\frac{16\sqrt{15}}{32} =-\frac{\sqrt{15}}{2} $
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+16\sqrt{15}}{2*16}=\frac{0+16\sqrt{15}}{32} =\frac{16\sqrt{15}}{32} =\frac{\sqrt{15}}{2} $

See similar equations:

| 3r-8=2(r-4)=r | | 3x+7=2×-2 | | 4-(-)2c=10 | | -13/7^5+11.4^4=32x^2+4/9 | | -0.9=x-69/2.8 | | 1.5x=x+12.5 | | 14-3f=11 | | -72=3(v+8)+5(3-8) | | 6x-11=10x+3 | | -3r+5=-15-4r | | 11=s/3-(-)8 | | 49=7(x | | 25/6x-3/2=13/6x+3/2 | | 9n-5n+18=28 | | 5t-(-)6=76 | | 2xx7=180 | | -52=4(2x+5)+8(3+5x) | | -52=4(2x+5)+8(3+5x | | d/8-(-)88=97 | | a=47(38) | | 1-2x=0.15 | | a=47(48) | | 80=96+80x-16x^2 | | 2x-140=180 | | 2(x-11)=30+x-2+3x | | 2x+3=21-3x | | -8(n+8)-6(-2n+3)=-58 | | r/2+2=4 | | 4x+11=-34 | | 17=3(e-5)+8 | | -7=10t-19 | | 7x-21=9x+6 |

Equations solver categories